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Abstract. In this article we give a new proof of well-known Ptolemy’s Theorem of
a Cyclic Quadrilaterals.

1. Introduction

In the Euclidean geometry, Ptolemy’s Theorem is a relation between the four sides and
two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common
circle). The Theorem is named after the Greek astronomer and mathematician Ptolemy
(Claudius Ptolemaeus). Ptolemy used the Theorem as an aid in creating his table of
chords, a trigonometric table that he applied to astronomy.

If the cyclic quadrilateral is given with its four vertices A, B, C, and D in order, then
the Theorem states that AC ·BD = AB · CD + BC ·AD.

This relation may be verbally expressed as follows:
If a quadrilateral is inscribed in a circle then the product of the measures of its diago-

nals is equal to the sum of the products of the measures of the pairs of opposite sides.
Moreover, the converse of the Ptolemy’s Theorem is also true:
If the sum of the products of two pairs of opposite sides of a quadrilateral is equal to

the product of its diagonals, then the quadrilateral can be inscribed in a circle.
In this short paper we deal with the new proof for this celebrated Theorem. Unfortu-

nately or fortunately what ever the proofs are available in the literature (some of them
can be found in [5], [1], [3] and [6]) are just based on constructing some particular lines
and applying similarity using little angle chasing between the triangles thus formed. But
in our present proof which is quite different from the available proofs, we won’t con-
struct any line. In fact we will just try to prove above mentioned result by using the
simple consequence of Theorem obtained by the “Stewart Theorem” on the diagonals of
convex quadrilateral. Our proof actually follows immediately from Equation (6) of The-
orem 2.2. In the end of the article we will also prove two characterizations of a Bicentric
Quadrilateral.

2. Main Theorems

Theorem 2.1. Let P be the point of intersection of diagonals AC and BD of a convex
quadrilateral ABCD and M is an arbitrary point in the plane then

(1)
CP

AC
·AM2 − DP

BD
·BM2 +

AP

AC
· CM2 − BP

BD
·DM2 = AP · PC −BP · PD,

1
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(2) Area(BCD) ·AM2 − Area(ACD) ·BM2 + Area(ABD) · CM2−
− Area(ABC) ·DM2 = Area(ABC) · (AP · PC −BP ·DP ).
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D

P

M

Fig. 1.

Proof. Since PM is a cevian for triangles AMC and BMD by Stewart’s Theorem we
have

PM2 =
CP

AC
·AM2 +

AP

AC
· CM2 −AP · PC

and

PM2 =
DP

BD
·BM2 +

BP

BD
·DM2 −BP · PD.

By setting the right sides of these two equations equal to each other, we obtain (1).
Using the property that a cevian divides a triangle into two triangles whose ratio

between areas is equal to the ratio between corresponding bases we have

AP

AC
=

Area(APD)

Area(ACD)
=

Area(APB)

Area(ACB)
=

Area(APD) + Area(APB)

Area(ACD) + Area(ACB)
=

Area(ABD)

Area(ABCD)
.

In the same manner,

CP

AC
=

Area(CBD)

Area(ABCD)
,

BP

BD
=

Area(ACB)

Area(ABCD)
,
DP

BD
=

Area(ACD)

Area(ABCD)
.

By replacing these ratios in (1), we get (2). �

Theorem 2.2. Let P be the point of intersection of diagonals AC and BD of a cyclic
quadrilateral ABCD and M is an arbitrary point in the plane then

(3) AP · PC = BP · PD,

(4)
CP

AC
·AM2 +

AP

AC
· CM2 =

DP

BD
·BM2 +

BP

BD
·DM2,

(5) Area(BCD) ·AM2 +Area(ABD) ·CM2 = Area(ACD) ·BM2 +Area(ABC) ·DM2,

(6)
AC

BD
=

BC · CD ·AM2 + AB ·AD · CM2

AD · CD ·BM2 + AB ·BC ·DM2
.
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Proof. From (1), for any point M we have

AP · PC −BP · PD =
CP

AC
·AM2 − DP

BD
·BM2 +

AP

AC
· CM2 − BP

BD
·DM2.

Let O be the circumcenter of the quadrilateral ABCD and

AO = BO = CO = DO = R.

Taking M as O, we have

AP · PC −BP · PD =
CP

AC
·AO2 − DP

BD
·BO2 +

AP

AC
· CO2 − BP

BD
·DO2 =

= R2 ·
(
AP + CP

AC
− BP + DP

BD

)
= 0.

Combining (3) with (1) and (2) we get (4) and (5).
Now for (6), we will follow the well known fact that area of a triangle whose sides are

a, b and c and circumradius R equals abc
4R . We have

Area(BCD) ·AM2 + Area(ABD) · CM2 = Area(ACD) ·BM2 + Area(ABC) ·DM2,

then

(7)
BC ·BD · CD

4R
·AM2 +

AB ·BD ·AD

4R
· CM2 =

=
AC ·AD · CD

4R
·BM2 +

AB ·BC ·AC

4R
·DM2,

and

BD ·
(
BC · CD ·AM2 + AB ·AD · CM2

)
= AC ·

(
AD · CD ·BM2 + AB ·BC ·DM2

)
.

�

3. Main Results

3.1. Ptolemy’s Theorems. In this section we present a new proof of the famous
Ptolemy’s Theorem.

Theorem 3.1 (Ptolemy’s Theorem). For any cyclic quadrilateral ABCD with diagonals
AC and BD holds

AC ·BD = AB · CD + BC ·AD.
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Proof. From Equation (6) we have

AC

BD
=

BC · CD ·AM2 + AB ·AD · CM2

AD · CD ·BM2 + AB ·BC ·DM2
.

Since it is true for any point M , let us take M as A. So

AC

BD
=

BC · CD ·AA2 + AB ·AD · CA2

AD · CD ·BA2 + AB ·BC ·DA2
=

AC2

AB · CD + AD ·BC
,

and
AC ·BD = AB · CD + BC ·AD.

�

Now we prove Ptolemy’s Second Theorem.

Theorem 3.2 (Ptolemy’s Second Theorem). For any cyclic quadrilateral ABCD with
diagonals AC and BD holds

AC

BD
=

BC · CD + AB ·AD

AD · CD + AB ·BC
.

Proof. From Equation (6) we have

AC

BD
=

BC · CD ·AM2 + AB ·AD · CM2

AD · CD ·BM2 + AB ·BC ·DM2
.

Let O be the circumcenter of the quadrilateral ABCD and R = AO = BO = CO =
DO. Taking M as O we have

AC

BD
=

BC · CD ·R2 + AB ·AD ·R2

AD · CD ·R2 + AB ·BC ·R2
,

and
AC

BD
=

BC · CD + AB ·AD

AD · CD + AB ·BC
.

�

3.2. Characterizations of bicentric quadrilaterals. Now we present the proof of
two Theorems about bicentric quadrilaterals.

Let us recall here the definition (for more details see for example [7]).

Definition. A bicentric quadrilateral is a convex quadrilateral that has both an incircle
and a circumcircle.

Theorem 3.3. Let ABCD be any bicentric quadrilateral with diagonals AC and BD.
If I is incenter of ABCD then

AI · CI

BI ·DI
=

AC

BD
=

BC · CD + AB ·AD

AD · CD + AB ·BC
.

Proof. Since ABCD is a cyclic quadrilateral, hence by Ptolemy’s Second Theorem we
have

(8)
AC

BD
=

BC · CD + AB ·AD

AD · CD + AB ·BC
.

Also from the equation (6) we have

AC

BD
=

BC · CD ·AM2 + AB ·AD · CM2

AD · CD ·BM2 + AB ·BC ·DM2
.
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Taking M as I we have

(9)
AC

BD
=

BC · CD ·AI2 + AB ·AD · CI2

AD · CD ·BI2 + AB ·BC ·DI2
.

Using triangle’s area formula, we obtain

2 · Area(AIB) = r ·AB = AI ·BI · sin

(
A

2
+

B

2

)
,

where r is the inradius of the quadrilateral ABCD. In the same manner,

2 · Area(BIC) = r ·BC = BI · CI · sin

(
B

2
+

C

2

)
,

2 · Area(CID) = r · CD = CI ·DI · sin

(
C

2
+

D

2

)
,

and

2 · Area(DIA) = r ·AD = DI ·AI · sin

(
D

2
+

A

2

)
.

Since ABCD is a cyclic quadrilateral, we have

sin

(
A

2
+

B

2

)
= sin

(
C

2
+

D

2

)
and

sin

(
B

2
+

C

2

)
= sin

(
D

2
+

A

2

)
.

Then
AI ·BI

CI ·DI
=

AB

CD
,

and
BI · CI

AI ·DI
=

BC

AD
.

Dividing these two equation on each other, we obtain(
AI

CI

)2

=
AB ·AD

CB · CD
,

and (
BI

DI

)2

=
BA ·BC

DA ·DC
.

Now using Equations (8) and (9), we notice that

AC

BD
=

BC · CD ·AI2 + AB ·AD · CI2

AD · CD ·BI2 + AB ·BC ·DI2
=

BC · CD + AB ·AD

AD · CD + AB ·BC
.

So
AC

BD
=

AD · CI2

BC ·DI2
,

and
AC

BD
=

BC ·AI2

AD ·DI2
.

By multiplying these, we get

AI · CI

BI ·DI
=

AC

BD
.
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Hence it follows the required result. �

Theorem 3.4. Let ABCD be any bicentric quadrilateral with diagonals AC and BD.
If ta, tb, tc, and td be the lengths of the tangents to its incircle from the vertices A, B,
C, and D respectively then

AC

BD
=

ta + tc
tb + td

.

Proof. From Equation (6) we have

AC

BD
=

BC · CD ·AM2 + AB ·AD · CM2

AD · CD ·BM2 + AB ·BC ·DM2
.

Let I be the incenter of quadrilateral ABCD and r be its inradius. Taking M as I,
we have

(10)
AC

BD
=

BC · CD ·AI2 + AB ·AD · CI2

AD · CD ·BI2 + AB ·BC ·DI2
.

Since AI = r

sin(A
2 )

, BI = r

sin(B
2 )

, CI = r

sin(C
2 )

and DI = r

sin(D
2 )

r2 =
tatbtc + tbtctd + +tctdta + tdtatb

ta + tb + tc + td
.

By replacing AI, BI, CI, and DI with their equivalent expressions in terms of ta, tb,
tc, and td (can be found in [2], [4] ), and AB = ta + tb, BC = tb + tc, CD = tc + td and
DA = td + ta in (10) and by some computation, the required result follows. �

In order to prove the same result in other way, we deal with the following proof.

Another proof. Let m := cot
(
A
2

)
and n := cot

(
B
2

)
.

Observe that ta = r ·m and tb = r · n.
We have

tc
r

= cot

(
C

2

)
= tan

(
A

2

)
=

1

m
,

hence tc = r
m and similarly td = r

n .
So

(11) BC · CD ·AI2 = (ta + tb) (tc + td)
(
r2 + t2a

)
=

=
r4

mn
(1 + mn) (m + n)

(
m +

1

m

)
= AB ·AD · CI2.

and

AD · CD ·BI2 =
r4

mn
(1 + mn) (m + n)

(
n +

1

n

)
= AB ·BC ·DI2.

Now we have
AC

BD
=

(
m + 1

m

)(
n + 1

n

) =
ta + tc
tb + td

.

Hence the result is alternatively proved.
�
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