SOME EXTENSIONS OF THE DROZ-FARNY LINE THEOREM

TRAN QUANG HUNG

ABSTRACT. We provide some generalizations of the Droz-Farny theorem and give synthetics proofs for them.

1. Introduction

Let ABC be a triangle with the orthocenter H. Let ℓ_1 and ℓ_2 be two perpendicular lines through H. Let A_1 , B_1 , and C_1 be the points where ℓ_1 intersects BC, AC, and AB, respectively. Similarly, let A_2 , B_2 , and C_2 be the points where ℓ_2 intersects BC, AC, and AB, respectively. In 1889 Arnold Droz-Farny stated that the midpoints of the three segments A_1A_2 , B_1B_2 , and C_1C_2 are collinear. He proposed this theorem without a proof and attracted the attention of quite a few authors. Both trigonometric and analytic approaches were given by Darij Grinberg, Floor van Lamoen [1, 5]. Milorad Stevanovic [4] offered a vector proof. Also, Darij Grinberg proposed a proof using inversion and another proof making use of angle chasing. Recently, Minh Ha Nguyen and The Vinh Luong present a synthetic proof using the notion of cross ratio and equal ratio in quadrilaterals [2]. After that in [3] Cyril Letrouit gives a clever extension using directly similar triangles.

In our paper we give an extension of the theorem by Droz-Farny and a synthetic proof taking up the idea of using equal ratio in quadrilaterals.

Fix a triangle ABC. Let P be a point on its circumcircle. Let P_a , P_b and P_c be the reflections of P in the lines BC, AC, and AB, respectively. Recall that, this points are collinear. The line $P_aP_bP_c$ is called the Steiner line of the point P with respect to the triangle ABC. A significant property associated with a Steiner line is that it contains the orthocenter H of the triangle ABC.

Theorem 1.1. Let ABC be a triangle and let P be a point on its circumcircle. Let ℓ_{St} be the Steiner line of P with respect to ABC and let Q be any point on ℓ_{St} . Denote by ℓ_1 and ℓ_2 the bisectors of the angle formed by lines ℓ_{St} and PQ. Let A_1 , B_1 , C_2 and A_2 , B_2 , C_2 be points of intersection of lines ℓ_1 and ℓ_2 with sides of the triangle ABC. Then the midpoints of the three segments A_1A_2 , B_1B_2 , and C_1C_2 are collinear.

In the case Q = H, we get the Droz-Farny theorem.

2. The proof of the Main Theorem

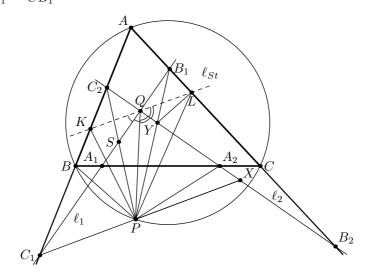
For ease of reference, recall our notations. Let H be the orthocenter of the triangle ABC, and P be a point on its circumcircle. Let ℓ_{St} be the Steiner line of P with respect to triangle ABC, and Q be a point on ℓ_{St} . Bisectors ℓ_1 and ℓ_2 of the angle formed by lines ℓ_{St} and PQ meet BC, CA, AB at A_1 , B_1 , C_1 and A_2 , B_2 , C_2 , respectively. We need to prove that the midpoints of A_1A_2 , B_1B_2 , C_1C_2 are collinear.

We give a proof of this extended theorem with the aid of a well-known lemma concerning equal ratio in quadrilaterals and the following lemma

Lemma 2.1. Let P be an arbitrary point on the circumcircle of the triangle ABC with the orthocenter H. Let ℓ_{St} be the Steiner line of P with respect to the triangle ABC. Bisectors ℓ_1 and ℓ_2 of the angle formed by lines ℓ_{St} and PQ meet BC, CA, AB at A_1 , B_1 , C_1 , A_2 , B_2 , C_2 , respectively. Then

(1)
$$\frac{QB_1}{QC_1} = \frac{A_2C}{A_2B};$$

(2) $\frac{BC_2}{BC_1} = \frac{CB_2}{CB_1}.$



Proof. Let us prove part (1). Without loss of generality we assume that P belongs the arc BC not containing A, the points A_1 and A_2 is between B and C while Q lies between B_1 , C_1 as illustrated in the figure. We need to prove that $\frac{QB_1}{QC_1} = \frac{A_2C}{A_2B}$.

Indeed, let ℓ_{St} intersects AB, AC at K, L and PC_1 meets QA_2 at X. In the triangle PQK, QC_1 is the internal angle bisector and KC_1 is the external angle bisector. It follows that PC_1 is the external angle bisector. In the triangle PQK, $PX = PC_1$ is the external angle bisector and QX is the external angle bisector, which implies that KX is the internal angle bisector. Hence, if KX meets QC_1 at S then S is the incenter of the triangle PQK. Therefore, PS is the internal angle bisector passing through C_2 which is the intersection of two external angle bisectors of the triangle PQK, thereby, we also obtain that S is the orthocenter of the triangle XC_2C_1 .

Let PB_1 meets QA_2 at Y. In the triangle PQL we have that QB_2 is the internal angle bisector, and LB_1 , QB_1 are external angle bisectors, which means that QB_1 is the internal bisector. Therefore, LY is the internal angle bisector of the triangle PQL, which implies the perpendicularity of LY and AC. In the triangle PQL, QB_2 is the internal angle bisector and LB_2 is the external angle bisector, which yields the fact that PB_2 is an external angle bisector. Moreover, PB_2 and PY are perpendicular. Consequently, quadrilaterals YQB_1L and PQC_2C_1 are concyclic, which gives rise to the equality

$$\angle PB_1C = \angle YQL = \angle YQP = \angle PC_1B.$$

Furthermore, P lies on the circumcircle of the triangle ABC, which implies that $\angle PBC_1 = \angle PCB_1$. Hence, triangle PBC_1 is similar to triangle PCB_1 , which also implies the similarity of PBC and PC_1B_1 . Simultaniously, it follows from the similarity of triangles PBC and PC_2B_2 that $\angle PCA_2 = \angle PB_2A_2$. This also implies concyclicity of quadrilateral PA_2CB_2 , from which we obtain

$$\angle PA_2B = \angle PB_2C = \angle LYB_1 = \angle LQB_1 = \angle PQC_1.$$

Now we can conclude that the triangle PA_2B is similar to the triangle PQC_1 , from which we derive the ratio $\frac{QB_1}{QC_1} = \frac{A_2C}{A_2B}$.

Now we prove part (2). From the first part, we derive $\angle PB_2C = \angle LYB_1 = \angle LQB_1 = \angle PQC_1 = \angle PC_2B$ and $\angle PCB_2 = \angle PBC_1$. From this we achieve that the triangle PCB_2 is similar to the triangle PBC_2 . Also $\angle PB_2C = \angle PC_2B$ implies that the two right triangles PC_2C_1 and triangle PB_2B_1 are similar. From the similarity of such triangles, we deduce the ratio $\frac{BC_2}{BC_1} = \frac{CB_2}{CB_1}$.

For the general case we need to use the concept of signed distances for our reasoning.

Lemma 2.2. Two triples of collinear points are A_1 , B_1 , C_1 and A_2 , B_2 , C_2 satisfying $\frac{B_1A_1}{B_1C_1} = \frac{B_2A_2}{B_2C_2}$. Let A_0 , B_0 , C_0 be the points that divide the segments A_1A_2 , B_1B_2 , C_1C_2 each into the same ratio. Then we have that A_0 , B_0 , C_0 are collinear.

The proof of this lemma is evident and now we shall use two lemmas to prove the extended theorem.

Proof. By Lemma 2.1, we have the following computations in which the distances are signed

$$\frac{A_1B_1}{A_1C_1} = \frac{QB_1 - QA_1}{QC_1 - QA_1} = \frac{\frac{QB_1}{QA_1} - 1}{\frac{QC_1}{QA_1} - 1} = \frac{\frac{C_2A}{C_2B} - 1}{\frac{B_2A}{B_3C} - 1} = \frac{C_2A - C_2B}{B_2A - B_2C} \cdot \frac{B_2C}{C_2B} = \frac{AB}{AC} \cdot \frac{CB_2}{BC_2}$$

Likewise, we obtain $\frac{A_2B_2}{A_2C_2} = \frac{AB}{AC} \cdot \frac{CB_1}{BC_1}$, from which we get $\frac{A_1B_1}{A_1C_1} = \frac{A_2B_2}{A_2C_2}$ by Lemma 2.2 then the midpoints of A_1A_2 , B_1B_2 , C_1C_2 are collinear. This completes the proof of Theorem 1.1.

Remark. Actually, we can prove that the midpoints of A_1A_2 , B_1B_2 , C_1C_2 belong to the perpendicular bisector of PQ by an easier way. Indeed, follow Lemma 2.1 we have P, Q lie on the circle with the diameter C_1C_2 . It means that midpoint of C_1C_2 lie on perpendicular bisector of PQ. Similarly, for midpoints of A_1A_2 and B_1B_2 . With this approach we can obtain Theorem 1.1 faster but Lemma 2.2 help us to obtain some more general results.

3. Some other extensions

When the orthocenter H coincides with Q, bisectors ℓ_1 and ℓ_2 can be replaced by any two mutually perpendicular lines passing through H. By taking up the idea of using equal ratio in a quadrilateral as above, we can get several other extensions.

Theorem 3.1. Let ABC be a triangle and let P be a point on its circumcircle. Let ℓ_{St} be the Steiner line of P with respect to ABC and let Q be any point on ℓ_{St} . Denote by ℓ_1 and ℓ_2 the bisectors of the angle formed by lines ℓ_{St} and PQ. Let A_1 , B_1 , C_2 and A_2 , B_2 , C_2 be points of intersection of lines ℓ_1 and ℓ_2 with sides of the triangle ABC.

Then the points divide the three segments A_1A_2 , B_1B_2 , and C_1C_2 in the same ratio are collinear.

Note that, we have an extension of Lemma 2.2

Lemma 3.2. Two triples of collinear points are A_1 , B_1 , C_1 and A_2 , B_2 , C_2 satisfying $\frac{B_1A_1}{B_1C_1} = \frac{B_2A_2}{B_2C_2}$. Let A_0, B_0, C_0 be points in the plane such that the triangles $A_0A_1A_2$, $B_0B_1B_2$, $C_0C_1C_2$ are directly similar. Then points A_0 , B_0 , C_0 are collinear.

Proof. Two lines contain two triples of collinear points A_1 , B_1 , C_1 and A_2 , B_2 , C_2 which intersect at L. The circumcircles of the triangle LA_1A_2 and LC_1C_2 intersect again at G. Then G is the center of spiral similarity which moves A_1 to A_2 and C_1 to C_2 . Because $\frac{B_1A_1}{B_1C_1} = \frac{B_2A_2}{B_2C_2}$ so in this spiral similarity B_1 moves to B_2 . Now from the directly similar triangles $A_0A_1A_2$, $B_0B_1B_2$, $C_0C_1C_2$, we see that this spiral similarity with the center G which moves A_1 to A_0 , B_1 to B_0 and C_1 to C_0 . It means that, the triangles GA_0B_0 and GB_0C_0 are respectively similar to triangles GA_1B_1 and GB_1C_1 . It follows, that $\angle GB_0A_0 = \angle GB_1A_1$ and $\angle GB_0C_0 = \angle GB_1C_1$. From this

$$\angle A_0 B_0 C_0 = \angle G B_0 A_0 + \angle G B_0 C_0 = \angle G B_1 A_1 + \angle G B_1 C_1 = 180^\circ.$$

It means that the points A_0 , B_0 , C_0 are collinear.

Now using the main idea from [3] and Lemma 3.2 we can get another extension.

Theorem 3.3. Let ABC be a triangle and let P be a point on its circumcircle. Let ℓ_{St} be the Steiner line of P with respect to ABC and let Q be any point on ℓ_{St} . Denote by ℓ_1 and ℓ_2 the bisectors of the angle formed by lines ℓ_{St} and PQ. Let A_1 , B_1 , C_2 and A_2 , B_2 , C_2 be points of intersection of lines ℓ_1 and ℓ_2 with sides of the triangle ABC. Let $A_1A_2A_3$, $B_1B_2B_3$, and $C_1C_2C_3$ be the directly similar triangles constructed on segments A_1A_2 , B_1B_2 , and C_1C_2 . Then the points A_3 , B_3 , and C_3 are collinear.

Acknowledgement. The author would like to thank referee Pavel Dolgirev for his suggestion of some important remarks. The author would like to thank Alexander Smirnov and Arseniy Akopyan for their help which makes this article much more understandable. The author also would like to thank Pham Van Thuan for his help in translation of this work.

References

- [1] D. Grinberg. Hyacinthos messages 9859, 2003.
- N. Ha and L. Vinh. Purely synthetic proof of the generalized droz-farny theorem. Global Journal of Advanced Research on Classical and Modern Geometries, 1(2):66-70, 2012.
- [3] C. Letrouit. On a new generalization of the droz-farny line. Forum Geometricorum, 16:367–369, 2016.
- M. Stevanovic. Hyacinthos messages 9130, 2004.
- [5] F. van Lamoen. Hyacinthos messages 6140, 6144, 2002.

HIGH SCHOOL FOR GIFTED STUDENTS, HANOI UNIVERSITY OF SCIENCE, HANOI NATIONAL UNIVERSITY, HANOI, VIETNAM.

 $E ext{-}mail\ address:$ analgeomatica@gmail.com