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Abstract. If equilateral triangles are inscribed in an irregular triangle in such a

way that each edge (or its extension) of the latter contains a distinct vertex of each

equilateral triangle, the centers of the equilateral triangles must lie on one of two
lines, each of which is orthogonal to the Euler line of the irregular triangle.

Inscribing a similar triangle using spiral similarity. Given irregular triangle ABC
and a point Da on BC or its extension, we want to construct a triangle DaEbFc such that
Eb and Fc lie on CA and AB (or their extensions) respectively, and DaEbFc is similar
to a given triangle DEF . This is essentially Problem 30 in [6]. To do this we employ
(following Yaglom) spiral similarity, a geometric transformation that includes a dilation
and rotation, each with the same center. When we apply a spiral similarity to a figure,
the resultant figure is similar to the original, since both dilation and rotation preserve
similarity.
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Fig. 1. Given Da on edge BC of triangle ABC, there are two ways to inscribe a triangle
DaEbFc similar to DEF . The one on the left (right) is properly (improperly) inscribed.

As shown in Fig. 1, we first find the orthogonal projection G of Da on AB. We
construct triangle GDaH similar to DEF . We can do this in two ways. On the left,
the triangles are directly similar; on the right, oppositely similar. The line orthogonal to
DaH at H is spirally similar to the edge on which G lies, and must contain Eb. Then
triangle DaEbFc is similar to DEF .

What we learn from this is that given point Da on edge BC of triangle ABC, there
are two similar triangles that we can inscribe. In one case (left side of Fig. 1) the vertices
of DaEbFc occur in the same sense as those of ABC as we traverse the perimeter, and
we say that that triangle is properly inscribed. In the other case (right side of Fig. 1),
the vertices of DaEbFc occur in the opposite sense as those of ABC as we traverse the
perimeter, and we say that that triangle is improperly inscribed.1 We want to show that

1This does not exhaust the possibilities for inscribing a triangle; two vertices could lie on the same

edge.
1
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the centers of the properly inscribed triangles (as we vary the location of Da) all lie on
a straight line, and that the same holds true for the improperly inscribed triangles.

Spiral similarity can propagate straight lines. As shown in Fig. 2, let us have a
spiral similarity of lines A1B1 and A2B2, and a second spiral similarity of lines A2B2

and A3B3 using the same center of rotation O. This means that ∠A1OA2 = ∠B1OB2,
A1O/A2O = B1O/B2O, ∠A2OA3 = ∠B2OB3, and A2O/A3O = B2O/B3O. We want
to prove that if A1, A2, and A3 are collinear, then B1, B2, and B3 are collinear. This
is essentially the first problem in §4.8 of [3]. Using the above, it is easy to show that
4OA1A2 ∼ 4OB1B2 and 4OA2A3 ∼ 4OB2B3 Therefore ∠OB2B1 + ∠B3B2O =
∠OA2A1 + ∠A3A2O. If the right side is a straight angle, then so is the left side.
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Fig. 2. Applying spiral similarities with center O to A1B1 we get A2B2 and to A2B2,
we get A3B3. If A1, A2, and A3 are collinear, are B1, B2, and B3 also collinear?

Thus, if we apply a spiral similarity with a single center point to a figure in such a
way that any point of the figure (different from the center point) travels on a straight
line, then all of the other points of the figure will also travel along straight lines. If we
properly inscribe two similar triangles DaEbFc and D′

aE
′
bF

′
c in triangle ABC, there is

a spiral similarity between the two. We can apply other spiral similarities to these two
using the same center to obtain triangles such as D′′

aE
′′
b F

′′
c with D′′

a lying on edge BC
or its extension. But then E′′

b must lie on edge CA or its extension and F ′′
c must lie

on AB or its extension. Furthermore, if we pick an arbitrary triangle center (centroid,
incenter, etc.), it will be located similarly in all of the inscribed triangles, and thus these
centers for all of the inscribed triangles must be collinear. The same argument applies to
triangles that are improperly inscribed. Their centers (whichever choice we make) will
also lie on a single straight line.

Pedal triangles of the isodynamic points. We want to locate the line of centers for
inscribed equilateral triangles, both for those properly inscribed and those improperly
inscribed. In Fig. 3, we show the isodynamic points S1 and S2 of triangle ABC. These
points are the intersection points of the three Apollonian circles. Each Apollonian circle
has a diameter with end points that are the intersection of an edge of ABC with the
interior and exterior bisectors of the opposite angle. It is known (see page 53 of [1]) that
the pedal triangles of the isodynamic points are equilateral triangles. This will allow us
to locate the two lines of equilateral triangle centers that we are seeking.
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Fig. 3. The isodynamic points S1 and S2 are the two intersections of the Apollonian
circles. Their pedal triangles are equilateral triangles with centers T1 and T2.

In Fig. 4, we do a spiral similarity of triangle DaEbFc, the properly inscribed equi-
lateral pedal triangle of the isodynamic point S1. We use S1 as the center of the trans-
formation. The angle of rotation is θ, and the ratio of magnification is sec θ. The
result is triangle D′

aE
′
bF

′
c with center T ′

1. Since ∠DaS1D
′
a = θ and S1D

′
a/S1Da = sec θ,

∠D′
aDaS1 must be a right angle. Therefore D′

a lies on edge BC. Similarly E′
b and F ′

c also
lie on triangle edges. Finally, the same reasoning means that T1T

′
1 is orthogonal to S1T1.

Thus all of the centers of properly inscribed equilateral triangles lie on a line through
T1 orthogonal to S1T1. A similar argument shows that all of the centers of improperly
inscribed equilateral triangles lie on a line through T2 orthogonal to S2T2.

Furthermore, we see that the D′
aE

′
b/S1T

′
1 = DaEb/S1T1, because they are linked by

a spiral similarity centered at S1. Then the smallest properly inscribed triangle obtains
when S1T

′
1 is a minimum, i.e., when it is orthogonal to the line of equilateral triangle

centers. Therefore T1 is the center of the smallest properly inscribed equilateral triangle,
which is the pedal triangle of S1. By similar reasoning, T2 in Fig. 3 is the center of the
smallest improperly inscribed equilateral triangle, the pedal triangle of S2.
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Fig. 4. The isodynamic point S1 has an equilateral pedal triangle DaEbFc with
center T1.
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The locus of equilateral triangle centers is orthogonal to the Euler line. We
have shown that the centers of properly inscribed equilateral triangles lie on a line or-
thogonal to S1T1 and that the centers of improperly inscribed equilateral triangles lie on
a line orthogonal to S2T2. We now want to prove that these lines are orthogonal to the
Euler line of the triangle. We need only show that S1T1 and S2T2 are parallel to the
Euler line.

We begin with the fact that the circumcenter, the isodynamic points, and the sym-
median (Lemoine) point are collinear, as shown in §602 of [2]. The symmedian point
is the concurrence of the symmedians. A symmedian of a triangle is the reflection of a
median in the angle bisector through the same vertex. It is known that the distances of
the symmedian point from the edges of the triangle are proportional to the lengths of
the corresponding edges. See page 59 of [4]. Thus in Fig. 5, we have drawn three vectors
from the symmedian point orthogonal to the edges, meeting each edge at a vertex of the
pedal triangle of the symmedian point. We want to know the sum of these vectors. We
know that

|~a|
BC

=
|~b|
CA

=
|~c|
AB

.

If we rotate the vectors by a quarter turn, they are parallel to the respective edges, and
we can form them into a triangle that is similar to ABC, and thus their sum is zero.
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Fig. 5. The dashed lines are symmedians, which concur at the symmedian point L.
Vectors from L to the vertices of its pedal triangle add up to zero.

We want to see what a similar vector sum is for the circumcenter of the triangle.
In Fig. 6, we have drawn three vectors from the circumcenter O to the vertices of the
pedal triangle of O with respect to triangle ABC. This triangle, A′B′C ′, is also the

medial triangle of triangle ABC. Since A′ is the midpoint of BC, we know that
−−→
OA′ =

(
−−→
OB +

−−→
OC)/2, and similarly for

−−→
OB′ and

−−→
OC ′. Since G is the centroid of ABC,

−−→
OG = (

−→
OA+

−−→
OB +

−−→
OC)/3 = (

−−→
OA′ +

−−→
OB′ +

−−→
OC ′)/3.

We know that O, G, and H lie on the Euler line, and that OH = 3OG, so that

−−→
OH = 3

−−→
OG =

−−→
OA′ +

−−→
OB′ +

−−→
OC ′.
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Fig. 6. Point O is the circumcenter of triangle ABC, G is its centroid, and H is its
orthocenter. We want to show that the three vectors from O to the vertices of its pedal

triangle sum to
−−→
OH =

−−→
OA′ +

−−→
OB′ +

−−→
OC ′.

Now we know that the sum of the vectors from the symmedian point to the vertices
of its pedal triangle is zero, and the sum of the vectors from the circumcenter to the
vertices of its pedal triangle is the vector from it to the orthocenter, i.e., in the direction
of the Euler line, which contains both points. But for any other point on the line through
the symmedian point and the orthocenter, this must also be true because of the linear
relationships. Then this must also be true of the isodynamic points,which are on this
line. And if we sum three vectors from a point to the vertices of an equilateral triangle,
the resultant is in the direction of the center of the equilateral triangle. Thus, the lines
S1T1 and S2T2 are parallel to the Euler line, and the lines containing the centers of the
inscribed equilateral triangles are orthogonal to the Euler line.

Trilinear coordinates. The trilinear coordinates for the isodynamic points and their
pedal triangle centers from the Encyclopedia of Triangle Centers are

S1 = sin(A+ π/3) : sin(B + π/3) : sin(C + π/3) X(15)

= cos(A− π/6) : cos(B − π/6) : cos(C − π/6)

S2 = sin(A− π/3) : sin(B − π/3) : sin(C − π/3) X(16)

= cos(A+ π/6) : cos(B + π/6) : cos(C + π/6)

T1 = cos(B − C) + 2 cos(A− π/3) X(396)

: cos(C −A) + 2 cos(B − π/3) : cos(A−B) + 2 cos(C − π/3)

T2 = cos(B − C) + 2 cos(A+ π/3) X(395)

: cos(C −A) + 2 cos(B + π/3) : cos(A−B) + 2 cos(C + π/3).
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The trilinear coordinates of the lines containing the centers of the inscribed equilateral
triangles are

T1T
′
1 = sin(A− π/3) : sin(B − π/3) : sin(C − π/3)

= cos(A+ π/6) : cos(B + π/6) : cos(C + π/6)

T2T
′
2 = sin(A+ π/3) : sin(B + π/3) : sin(C + π/3)

= cos(A− π/6) : cos(B − π/6) : cos(C − π/6).

Acknowledgements. The current version of this proof was primarily devised by the
editors of this journal, whom I warmly thank. My original version relied heavily on
analytics involving trilinear coordinates. It was much longer and more opaque. I learned
a great deal from the sage (but succinct) observations of the editors.
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