THE ARBELOS IN WASAN GEOMETRY, PROBLEMS OF IZUMIYA AND NAIT $\bar{\mathrm{O}}$

HIROSHI OKUMURA

ABSTRACT. We generalize two sangaku problems involving an arbelos proposed by Izumiya and Naitō, and show the existence of six non-Archimedean congruent circles.

1. Introduction

In this article we generalize two sangaku problems involving an arbelos proposed by Izumiya and Naitō. Let α , β and γ be the three semicircles with diameters AO, BO and AB, respectively for a point O on the segment AB constructed on the same side of AB. The area surrounded by the three semicircles is called arbelos (see Figure 1). The radical axis of α and β is called the axis. Let a and b be the radii of α and β , respectively, and let δ_{α} (resp. δ_{β}) be the incircle of the curvilinear triangle made by α (resp. β), γ and the axis. The two circles δ_{α} and δ_{β} have common radius $r_{\rm A} = ab/(a+b)$ and are called the twin circles of Archimedes.

Figure 1.

Izumiya's problems appeared in a sangaku in Saitama hung in 1866, which is as follows [6] (see Figure 2).

Problem 1. If α and β are congruent and the tangent of α from B meets γ in a point C, show that the inradius of the curvilinear triangle formed by α , γ and the perpendicular from C to AB equals a/9.

Naitō's problem appeared in a sangaku in Fukushima hung in 1983 (the sangaku seems to be made in modern day times), which is as follows [1] (see Figure 3).

Problem 2. If α and β are congruent, show that the radius of the circle touching the remaining external common tangent of α and δ_{α} and the arc of γ cut by the tangent at the midpoint equals a/9.

2. Generalization

We now consider the case in which the semicircles α and β are not always congruent. We use the next proposition (see Figure 4).

Figure 4.

Proposition 2.1. For a point P on the segment AB, let h be the perpendicular to AB at P. If δ_1 is the circle touching h at P from the side opposite to B and the tangent of β from A and δ_2 is the circle touching α externally γ internally and h from the same side as δ_1 , then δ_1 and δ_2 are congruent.

Proof. The radius of δ_2 is proportional to the distance between its center and the radical axis of α and γ [2, p. 108], while δ_2 coincides with β if P = B. Also the radius of δ_1 is proportional to the distance between its center and the point A, and δ_1 coincides with β if P = B.

Theorem 2.2. Let C be the point of intersection of γ and the tangent of α from B and let D be the foot of perpendicular from C to AB. The incircle of the curvilinear triangle made by α , γ and CD is denoted by ε_1 . Let u be the remaining external common tangent of α and δ_{α} . The circle touching u and the arc of γ cut by u at the midpoint is denoted by ε_2 . The incircle of the curvilinear triangle made by γ , δ_{β} and the axis is denoted by ε_3 . The circle touching the tangent of β from A and CD at D from the side opposite to B is denoted by ε_4 . The smallest circle passing through the point of intersection of β and BC and touching the axis is denoted by ε_5 . The smallest circle passing through the point of intersection of BC and u and touching the line CD is denoted by ε_6 . Then the following statements hold.

(i) The six circles ε_1 , ε_2 , \cdots , ε_6 are congruent and have common radius

$$\frac{a^2b}{(a+2b)^2}.$$

(ii) The circle ε_1 touches the line t, and the circle ε_2 touches γ at C.

Proof. We assume that r_i is the radius of ε_i , d=a+2b, E is the point of intersection of BC and β , F is the foot of perpendicular from E to the axis, G is the point of tangency of α and BC, H is the center of α , and BC meets the axis and u in points J and K, respectively (see Figure 6).

Since the three segments CA, GH and EO are parallel and H is the midpoint of AO, G is the midpoint of CE. While the line BC is the internal common tangent of α and δ_{α} [3, p. 212]. Therefore G is also the midpoint of JK. Hence |EJ| = |CK|, i.e., the circles ε_5 and ε_6 are congruent. Since the triangles BGH, BEO and OFE are similar, a/d = |OE|/(2b) = |EF|/|OE|. Therefore |OE| = 2ab/d and $|EF| = 2a^2b/d^2$. Hence $r_5 = a^2b/d^2 = r_6$, and $|OF| = 4ab\sqrt{(a+b)b}/d^2$ from the right triangle OFE.

The last equation implies $|EF| = \frac{a|OF|}{2\sqrt{(a+b)b}}$. Let x = |BD|. Then $|CD| = \frac{ax}{2\sqrt{(a+b)b}}$ from the similar triangles OFE and BDC. Therefore we have

$$x(2(a+b)-x) = |CD|^2 = \frac{a^2x^2}{4(a+b)b}.$$

Solving the equation for x, we get $x = 8b(a+b)^2/d^2$. Therefore

$$|AD| = 2(a+b) - x = 2a^2(a+b)/d^2.$$

Therefore $r_4 = b|AD|/|AB| = a^2b/d^2 = r_1$ by Proposition 2.1. Meanwhile ε_3 and the incircle of the curvilinear triangle made by α , γ and t have radius a^2b/d^2 [5, Theorem 9]. Therefore the last circle coincides with ε_1 , i.e., ε_1 touches t. While we have also shown that ε_1 and ε_2 are congruent in [4]. This proves (i) and the first half part of (ii).

Let ζ be the circle with center C passing through G. We invert the figure in ζ . Then the circles α and δ_{α} are orthogonal to ζ , i.e, they are fixed by the inversion. The line u, which intersects ζ , is inverted to a circle intersecting ζ touching α and δ_{α} passing through C. Therefore γ is the inverse of u. This implies that the points of intersection of γ and u lie on ζ . Hence C is the midpoint of the arc of γ cut by u. Therefore ε_2 touches γ at C. This proves the second half part of (ii).

Circles of radius r_A are called Archimedean circles [3]. Therefore we now have six non-Archimedean congruent circles $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_6$. Exchanging the roles of α and β , we get another six non-Archimedean congruent circles of radius $ab^2/(2a+b)^2$, which are denoted in Figure 5.

3. The circle associated with a point on γ

For a circle δ touching α externally and γ internally, if P is the point of intersection of γ and the internal common tangent of δ and α closer to B, we say that δ is associated with P. As mentioned in the proof of Theorem 2.2, the circle δ_{α} is associated with the point B (see Figure 6). We can also consider that the point circle A is associated with the point A itself, because the perpendicular to AB at A can be considered as the internal common tangent of the point circle A and α . Let A be the point of intersection of A and the axis. The next theorem gives the circle associated with the point A.

REFERENCES

5

Theorem 3.1. The internal common tangent of α and ε_1 passes through I.

Proof. Let ρ be the circle with center I passing through O. We invert the figure in ρ (see Figure 7). Then α and β are fixed. While t, which intersects ρ , is inverted into the circle with center I touching α and β intersecting ρ . Therefore γ is the inverse of t. Hence the figure consisting of α , γ and t is fixed by the inversion. This implies that ε_1 is also fixed. Since α and ε_1 are orthogonal to ρ , their point of tangency lies on ρ , and their common internal tangent passes through I.

The proof also shows that the points of intersection of γ and t lies on ρ . Therefore I is the midpoint of the arc of γ cut by t.

References

- [1] F. W. S. Association ed. The sangaku in Fukushima. Sõju Shuppan, 1989.
- [2] J. L. Coolidge. A treatise on the circle and the sphere. Chelsea Publishing Co., Bronx, N.Y., 1971, page 602. Reprint of the 1916 edition.
- [3] C. W. Dodge, T. Schoch, P. Y. Woo, and P. Yiu. Those ubiquitous Archimedean circles. *Math. Mag.*, 72(3):202–213, 1999. ISSN: 0025-570X. DOI: 10.2307/2690883. URL: https://doi.org/10.2307/2690883.
- [4] H. Okumura. Are those Archimedean triplet circles really triplets? *Normat*, 60(1):9–14, 48 (2013), 2012. ISSN: 0801-3500.
- [5] H. Okumura and M. Watanabe. The twin circles of Archimedes in a skewed arbelos. *Forum Geom.*, 4:229–251, 2004. ISSN: 1534-1178.
- [6] The Sangaku in Saitama. Saitama Prefectural Library, 1969.

Takahanadai Maebashi Gunma 371-0123, Japan $Email\ address$: hokmr@yandex.com