
ELLIPSE GENERATION RELATED TO ORTHOPOLES

PARIS PAMFILOS

Abstract. In this article we study the generation of an ellipse related to two inter-
secting circles. The resulting configuration has strong ties to triangle geometry and
by means of orthopoles establishes also a relation with cardioids and deltoids.

1. Ellipse generation

Our basic configuration consists of two circles α and β, intersecting at two different
points C and D. In this we consider a variable line ε through point C, intersecting the
circles, correspondingly, at A and B. Then draw the tangents at these points, intersecting
at point E and take the symmetric Z of E w.r. to the line AB (See Figure 1). Next
theorem describes the locus γ of point Z as the line ε is turning about the point C.
The two tangents η and λ to the circles, correspondingly, β and α, at C, are special
positions of ε and play, together with their intersections H and L with the circles, an
important role in this context. Another important element is line ν, the orthogonal
at D to the common chord CD of the two circles. This line intersects circles α and β,
correspondingly, at points M and N .
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Fig. 1. Ellipse from two intersecting circles

Theorem 1. As the line AB varies turning about C, the corresponding point Z de-
scribes an ellipse γ. This ellipse is also tangent to lines {η, λ, ν}, respectively at the
points {H,L,D}. The ellipse degenerates to the segment MN , when the two circles are
orthogonal.
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Fig. 2. First properties of the basic configuration

The synthetic proof of the theorem relies on two lemmas, which use the, variable
with E, circumcirlce (ABE) of triangle ABE, as well as the intersection points K and I
of lines, correspondingly, MN and AB with EZ. (See Figure 2).

Lemma 1. With the definitions made above, the following are valid properties:

(1) The quadrilateral CDKI is a cyclic one and cirlce (ABE) passes through D
and K.

(2) Lines CM and BK are parallel.
(3) Lines AZ and CL are parallel and orthogonal to BK. Analogously, lines CN

and AK are parallel, and lines BZ, CH are parallel and orthogonal to the two
previous parallels.

(4) Lines BL and AH are tangent to the circle (ABE).
(5) Triangles HAC and CBL are similar.

Proof. The first part of statement (1) is obvious, since the opposite lying angles ĈIK

and ĈDK are right. The second part of (1) follows from the fact that quadrilaterals
ADKE and BKDE are cyclic. The reasoning for the two quadrilaterals is the same.
For instance, in the case of ADKE, this follows from the equality of angles

M̂DA =
π

2
− ÂDC =

π

2
− ĈAE = ÂEI.

Statement (2) follows by observing that

ÂCM = ÂDM = ÂBK,

since the quadrilateral ABKD is cyclic.
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Statement (3) follows by observing that angle ẐAB, by symmetry, equals angle B̂AE,

which is equal to angle B̂CL, since both angles are formed by the tangents at the ex-
tremities of the chord AC of circle α. The orthogonality of CM to CL is obvious, since
CM is a diameter of α and CL is tangent at its extremity C.

To prove (4) consider the angle B̂AE, which by symmetry w.r. to AB equals angle

B̂AZ, which by the parallelity of AZ to CL equals angle L̂CB. This, by the tangent
chord property, for circle (CBL), equals the angle of lines LB and EB, thereby proving
the claim.

Property (5) follows from the previous one, showing that the two triangles have,

respectively, equal angles at A and B. But also ĈAH = L̂CB by the tangent-chord
property for the chord AC in circle (HAC). �

In the next lemma, besides the variable circle (ABE) we consider the circle (ABZ)
and its other than B intersection point G with circle β = (CBL). In addition, point J
is the intersection of lines BZ and HD and point Q is the intersection of line CZ with
the circle α = (HAC). Finally we consider also the intersection point F of the variable
lines AB and ZL, and the analogous intersection point F ′ of lines AB and ZH . Next
lemma shows that F and F ′ (later not drawn in the figure) move, respectively, on two
fixed lines (See Figure 3).

D

C B

L

H

A

E

α

M
N

β

Ζ

I

K

F

G

J
Q

ν

ε
η

λ

Fig. 3. Coincidences in the basic configuration

Lemma 2. Under the definitions made above the following are valid properties:

(1) Point G lies also on the variable line ZL.
(2) The circle (ABE) passes through point J .
(3) Circle (ZDJ) passes through Q.
(4) Circle (ZDJ) passes through G.
(5) Point F moves on the fixed line HD. Analogously point F ′ moves on line LD.
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Proof. Property (1) is valid, because, by hypothesis, the two quadrangles ZABG and
LCBG are cyclic. Hence, by the parallelity of AZ, CL, their angles at G are the same,
which proves the stated collinearity.

Property (2) is valid because angle ĤDA equals angle ĤCA and by parallelity of HC

to BZ, last angle equals ĴBA, hence quadrangle JBAD is cyclic.

Property (3) is valid because angle D̂JZ, by the cyclic ABJD, equals angle D̂AC,

which, by the cyclic DACQ, equals angle D̂QZ.

Property (4) follows from the fact that angle L̂GD equals angle L̂BD, which equals

angle D̂AB. The last equality following from the fact that BL, as well as, AH are tangent
to the circle (ABE), by (4) of the previous lemma. By the tangent-chord property angle

D̂AC is equal to angle D̂CL, thereby proving the claim.
Property (5) follows from the previous claims, which show that lines ZL,HD and AB

are, correspondingly, the radical axes of the pairs of circles (ZDG,ZAB), (ZDG,ABE)
and (ZAB,ABE), hence point F is the radical center of these three circles. The proof
for point F ′ is similar. �

Proof of the theorem. That the curve traced by Z is a conic, follows from the theorem of
Maclaurin (see the appendix below). In fact, by lemma 2(5), the variable triangle ZFF ′

has its vertices F , F ′, correspondingly, on two fixed lines η = HD and η′ = LD. Besides,
all of its sides pass through fixed points: FF ′ passes through C, ZF passes through L and
ZF ′ through H . By Maclaurin’s theorem, the free vertex (Z) (See Figure 4) describes a
conic. The fact that the conic is a bounded one i.e. an ellipse, results from the property
of the point Z, describing the conic, to be the reflection of point E on line AB. Below
(theorem 2) it will be seen that point E describes a bounded curve, while AB is turning
about the fixed point C. Hence the reflection Z of E on AB is also bounded.
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Fig. 4. Conic generated by vertex Z of the variable triangle ZFF ′
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As discussed in the appendix, the fact that H is on η, implies that CH is tangent to
the conic. Analogously CL is also tangent to the conic. The fact that the conic is also
tangent to line MN at D (See Figure 4) follows from the convergence of line DZ to line
MN , as point E converges to D.

The claim on the degeneracy of the ellipse, when the two circles {α, β} are orthogonal,
follows from the fact that point L (resp. H) becomes identical to N (resp. M), when
the circles {α, β} become orthogonal. In this case triangle CHL becomes right-angled
at C. �

2. The cardioid

Here and the sequel we use the notation introduced in the first section. A definition
of the cardioid is given in the appendix, where are also discussed some of its known
properties, which are relevant for our investigation. For a short synthetic account of the
geometry of cardioids we refer to Akopyan’s article [3].

Theorem 2. Given two circles α and β, intersecting at two different points C and D, the
intersection point E of their tangents at the extremities of a variable chord AB through C
describes a cardioid with its cusp at D.
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Fig. 5. Cardioid generation by the point E

Proof. In fact, by lemma 1, the quadrilateral AEDB is cyclic and this implies that angle

ÂEB is constant, even equal to ĤCL (See Figure 5). The result follows then as a special
case of a known theorem of Butchart (see Appendix). We proceed though here to a short
proof of our special case, since some of its ingredients are important for the subsequent
discussion. We prove that the locus of E can be identified with a cardioid in its usual
geometric definition. In conformance with this definition, we show that the locus of E
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coincides with the locus of a fixed point E of a circle ρ, which is rolling on the fixed equal
circle ζ, starting from the point D, which coincides with the cusp of the cardioid.

For the proof, notice first that the circumcenter X of the variable triangle ABE
describes a circle ζ passing through the centers Oα, Oβ of α, β and the point D. This
follows from the definition of X , which is the intersection of medial lines of segments DA

and DB, which always pass correspondingly through Oα, Oβ and build an angle ÔαXOβ

complementary to ÂDB, which is constant and equal to angle ÔαDOβ .
A second remark is that the intersection point Y of circle ζ and line XB is also on the

circle β. In fact, if X ′, X ′′ are correspondingly the middles of segments DE, DA, then,

from the cyclic quadrilateral Y XOαD, follows that angle X̂Y D equals angle X̂ ′′OαD.

This, by the tangent-chord property, equals angle Â′AD. This in turn, by the cyclic

DAEB is equal to ÊBD, which by the tangent-chord property is equal to angle B̂LD.
This shows that the quadrilateral Y BLD is cyclic and proves the claim.

By the definition of X , angle X̂ ′XD is also equal to ÊBD. It follows that X ′X is
tangent at X to circle ζ. Thus, taking the symmetric Oρ of Oζ w.r. to X we define
circle ρ with center at Oρ, which is equal to ζ, tangent to it at X and passing through E.
It follows that the locus point E defines on circle ρ an arc XE, which is equal to the arc
XD of the fixed circle ζ. This completes the proof of the rolling property of ρ on ζ and
proves the theorem. �

Remark 1. As is pointed out in the appendix, the cardioid is symmetric w.r. to the
line DOζ and up to congruence completely determined by the circle ζ. Later we will see
that circle ζ is congruent to the Euler circle of a triangle circumscribing the ellipse γ.
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Fig. 6. Cardioid as envelope of circles

Remark 2. Notice that the cardioid can be also generated by fixing a point D on a
circle ζ and considering all circles ζ with radii rζ = |DX |, where their center X is
another arbitrary point of ζ. The envelope of the family of all these circles (See Figure 6)
is a cardioid. The two circles α, β of our configuration are two particular circle-members
of such a family. The circumcircle ξ of the variable triangle ABE belongs also to this
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family. By its property to be envelope of all these circles, follows that the cardioid is
tangent to the circles α, β and ξ. Referring back, to figure 5, and the fact, shown there
that X ′X is the medial line of DE, follows that the points of tangency of these circles
with the cardioid are respectively points H , L, and E.

3. A circumscribing triangle

In this section we focus on the triangle MNV , whose sides are shown to be tangent to
the conic γ. Besides line MN , already met in the previous paragraphs, we consider here
the lines MV and NV , which are the tangents, correspondingly, at M and N of circles
α and β (See Figure 7). The context here is that of triangle centers and the inscribed
conics in triangles, which have these centers as perspectors. A general reference for these
concepts is the book of Akopyan and Zaslavsky on the geometry of conics [2, p. 105] and
Yiu on the geometry of the triangle [31]. Of particular importance for our subject is the
concept of the orthopole and the orthopolar conic, defined and discussed in short in the
appendix.
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Fig. 7. The circumscribed triangle MNV

Theorem 3. The ellipse γ is an inscribed conic in the triangle MNV . The center of
the ellipse coincides with the cicrumcenter O of the triangle and this identifies it with the
inconic with perspector X69. This is the ellipse generated by the orthopoles of all lines
passing through the De Longchamps point X20 of the triangle MNV .

Proof. The proof on the triangleMNV circumscribing the ellipse follows from lemma 1(3),
asserting that lines {AZ,BZ} (See Figure 7) are always parallel, respectively, to {CL,CH}.
Thus, the ellipse is contained in the strip consisting of CL and its parallel MH ′ from M .
It follows that the ellipse has exactly one common point H ′ with this parallel, which,
consequently, is a tangent to the ellipse. Analogously, the ellipse is tangent to the line
NL′, which is parallel to CH from N . Note that the reasoning shows also that points
H ′ and L′ are, respectively, symmetric of L and H w.r. to the center O of the conic.

The proof on X69 follows by identifying the ellipse with the orthopolar conic of the De
Longchamps point X20 of the triangle MNV , which is the ellipse tangent to the triangle
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and having its center at the circumcenter of the triangle. This ellipse is the locus of
points which are orthopoles of the lines passing through X20 (see appendix).

The fact, in turn, that the circumcenter O of the triangle MNV is the center of the
ellipse follows by observing that quadrangle CMVN is cyclic, its angles at M and N
beign right, and the ellipse is inscribed in the parallelogram defined by the lines CH , CL,
V N , and VM . This implies that the center of the ellipse is the intersection point of the
diagonals of the parallelogram, one of which (CV ) is a diameter of the circumcircle κ. �

4. A bitangent triangle

Of particular interest for our discussion is also the bitangent to γ triangle CHL, i.e.
a triangle that has only two of its sides (CH,CL) tangent to γ, correspondingly, at points
H and L. Of interest also is the circumcircle δ of triangle CHL. In the formulation of the
next theorem enter the concepts of the symmedians and the Brocard points of a triangle,
for which we refer to the aforementioned book of Yiu. The following theorem expresses
the main properties of this configuration (See Figure 8).
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Fig. 8. The bitangent to γ triangle CHL

Theorem 4. Line CD is a symmedian for the triangle CHL and point D coincides
with a vertex of its second Brocard triangle. The circumcenter Oδ is the middle of the
segment MN . If point F is the intersection of δ with the variable line AB, then line FZ
is parallel to the fixed line CD. The circle δ and the ellipse γ have two common parallel
tangents tH and tL, which are orthogonal to line MN .

The proof of the theorem relies on the following two lemmas. In these we consider the
second intersection point U of the circle δ = (CHL) with the line AB and the triangle
EA′B′ with sides the lines EA, EB and the tangent tU to δ at U , points A′, B′ being,
correspondingly, the intersections of this tangent with lines EA and EB (See Figure 9).
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Fig. 9. The similar triangles: fixed CHL and variable A′EB′

Lemma 3. Under the definitions made above, the following are valid properties:

(1) Quadrangles UBB′L and UA′AH are cyclic.
(2) Triangle A′EB′ is similar to HCL.
(3) Triangles HA′U,UB′L and HUL are similar.
(4) Point U is the middle of A′B′.

Proof. To prove (1), write angle ÛB′B = ÛBE − B̂UB′. By the tangent-chord theorem

these angles are equal: ÛBE = ĈLB, B̂UB′ = ĈLU . It follows that ÛLB = ÛB′B
and this proves the first claim for quadrilateral UBB′L. Analogous is the proof for the
quadrilateral UA′AH .

To prove (2), notice that ĈLB = ĤLU , which implies ÛLB = ĤLC. This follows

from the equalities of angles: ĈLB = ĈBE = ÂCH = ĤLU . Analogously follows that

ÊA′B′ = ĈHL and thereby the proof of the claim.
To prove (3) use property (4) of theorem 1. By this, lines AH and BL are tangent to

the circle η = (ABE) (See Figure 9). Using the previously proven properties this implies

that ĤA′U = ĤAU = ÛBL = ÛB′L. Similarly, ÛHA′ = ÛAA′ = L̂BB′ = L̂UB′. By

the tangent chord property for cirlce δ follows that ÛHL = L̂UB′. Analogously also

ĤLU = ĤUA′, thereby completing the proof of this claim.

The proof of (4) follows by observing that HU is the bisector of angle Â′HL, hence
divides the corresponding arc of circle δ in two equal parts and UP = UL, where P
the second intersection of line HA′ with circle δ. This implies that triangles UPA′ and
ULB′ are congruent and completes the proof of this claim. �
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Lemma 4. The variable line UZ, where U is the second intersection point of AB with
circle δ, is always parallel to line CD.

Proof. For the proof we use the result of the previous lemma, by which, the variable
triangle A′EB′ remains similar to the fixed one HCL. We use also the well known result
identifying point D with a vertex of the second Brocard triangle of the triangle HCL
([12, p.283]). By this result, the symmedian point of triangle CHL is on line CD, which
then is isogonal w.r. respect to this triangle to its median CU ′ (See Figure 10). To
prove the lemma we show that lines UZ and CD are equal inclined to side CH of the
triangle CHL. In fact, by (3) of lemma 1, line CH is parallel to BZ, and, by symmetry,

ÛZB = ÛEB. Last angle, by the similarity of triangles A′EB′ and HCL and because U

is the middle of A′B′, equals Û ′CL. This angle, by the noticed above isogonality of CD

and CU ′, equals angle ĤCD, thereby completing the proof of the lemma. �
The proof of theorem 4 follows immediately from the preceding lemma.

5. An Euler circle

In this section we turn back to triangle MNV , discussed in section 3, and its Euler
cirlce θ, combining results obtained in the previous paragraphs. The main property of
this circle is its equality with the circle ζ, introduced in section 2, and carrying the
circumcenters of all triangles EAB. This equality is realized by a point-symmetry with
respect to the center Oδ of the circle δ, introduced in section 4. The main properties
in this context, are easy to derive consequences of the previous discussion and are listed
in the following theorem. Some additional elements, involved in this theorem, are the
orthocenter H ′ of triangle MNV and the feet V ′, M ′ and V ′ of the altitudes from the
corresponding vertices of the triangle (See Figure 11).

Theorem 5. Under the definitions made above the following are valid properties:

(1) Point C is the symmetric of the orthocenter H ′ of triangle MNV w.r. to the
middle Oδ of its side MN .
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(2) The circumcircle δ of triangle CHL passes through H ′ and points {L,H} are on
the altitudes of triangle MNV , at distance from the vertex equal to the distance
of H ′ from the corresponding altitude-foot.

(3) The circle ζ = (DOαOβ) is the symmetric of the Euler circle θ of MNV w.r. to
the middle Oδ of MN .
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Fig. 11. ζ symmetric to the Euler circle θ w.r. to Oδ

Proof. Properties (1) and (2) follow from the presence of the parallelogram p1, having
for sides the lines {CH,HL,NV, VM}. As proved in theorem 3, the circumcenter O of
triangle MNV is the middle of the diagonal V C. Besides, lines CD and V V ′ are both
orthogonal to MN . Thus, the middle O of V C projects on the middle of DV ′ and this
shows that |DOδ| = |OδV

′|. Since CL is orthogonal to NN ′ and CH is orthogonal to
MM ′, it follows that they meet on the altitude V V ′ at a point H ′, which is diametral
to C w.r. to circle δ.

Property (3) follows by considering the symmetrics of points Oα, Oβ w.r. to Oδ.
Because CNH ′M is a parallelogram and Oδ is its center, these two points coincide
respectively with the middles of H ′N and H ′M , which are points of the Euler circle θ of
MNV . This shows the stated symmetry about Oδ. �

There are several properties that follow from the previous theorems, and their proofs
are easy exercises. Thus, for example, segment DC is equal to H ′V ′, which is also equal
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to V V1, where V1 is the intersection of DO with the altitute V V ′ (See Figure 11). It
is also easily seen that the ellipse γ passes through V1, that line DH is parallel to ON ,
that CV is orthogonal to N ′M ′, which is parallel to the common tangent at Oδ of the
circles ζ and θ. Perhaps, we should notice aslo that the ellipse γ passes through six easily
constructible points. The first triad of these points consists of the symmetrics of the feet
of the altitudes w.r. to the middles of the respective sides, like the point D, which is
symmetric to V ′ w.r. to Oδ. The other triad of points are on the altitudes, like V1 in
distance |V V1| = |H ′V ′| = |DC|.

6. Inverse construction

Next theorem deals with the inverse procedure, succeeding to reproduce a given el-
lipse γ by the procedure described above, applying it at a point D ∈ γ.
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Fig. 12. Constructing two circles α, β at every point of an ellipse

Theorem 6. Given an ellipse γ, for every point D ∈ γ there are two uniquely defined
circles {α, β}, which generate the ellipse by the preceding method.

Proof. This is a direct consequence of theorem 4. In fact, consider the tangent ε of the
conic at an arbitrary point D and project its center O to point Oδ on it (See Figure 12).
Then consider the conjugate to the direction of OOδ, diameter H1L1 of the ellipse. The
circle δ is defined by its center at Oδ and diameter equal to the length of the projection
H2L2 of H1L1 on line ε. Let C be the intersection point of δ on the normal of the ellipse
at D, lying on the other side than O. Draw from C the tangents CH , CL to the ellipse.
There are defined two circles α = (CDH), β = (CDL). In view of theorem 1, the two
intersecting circles define, by the procedure studied above, the ellipse γ. �
A question that comes up from the previous property is, about the behavior of the
configurations that result from the various places of point D on the ellipse. To this
answers the following statement.

Theorem 7. For all places of D on γ the segment OC is of constant length. Thus, all
resulting triangles MNV that circumscribe the ellipse γ are also inscribed in the same
circle κ, which has the radius rκ = |OC| = a+ b, where {a, b} are the axes of the ellipse
and has the same center with it. Consequently the cardioids for the various places of D
are congruent to each other.
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Proof. The proof of this could be given by a calculation, using, for example, known
formulas for the tangents from a point, the chords of contact points to the ellipse etc.
([26, pp.221-233]). The property, though, lends itself for a synthetic proof. In fact,
consider an ellipse γ, a point D ∈ γ, the corresponding triangle MNV , constructed by
the procedure, and its circumcircle κ (See Figure 13). By Poncelet’s porism ([2, p.93],
[7, p.203 (II)]), for every other tangent M ′N ′, at another point D′, we would obtain a
triangle M ′N ′V ′ which is also circumscribed in γ and inscribed in κ. Now, if there were
a triangle M ′′N ′′V ′′ circumscribed to γ and inscribed in another concentric circle κ′, of
radius, say, greater than that of κ, then, by applying again Poncelet’s porism, we could
construct the triangle so that the lines M ′N ′ and M ′′N ′′ coincide. Then it is readily seen
that the corresponding vertex V ′′ cannot lie on κ′. This contradiction shows that, by
our procedure, the constructed circumscribed about γ triangles MNV have all the same
circumcircle κ. The claim about the radius follows then easily by simply considering D to
be at a vertex of the ellipse and evaluating rκ = |OC| = |CD|+|L1L2| = |DL2|+|L2L1| =
a+ b (See Figure 14). The result for the cardioids is an immediate consequence, of their
generation by the rolling of a circle on another circle, both being congruent to the Euler
circle of triangle MNV . �

Corollary 8. For every ellipse γ with center O, axes {a, b} and every triangle cir-
cumscribed to the ellipse and having O for circumcenter, its vertices lie on the circle
κ(O, a+ b).
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Fig. 15. EZ is a Simson line of triangle MNV

7. Simson lines and deltoid

The construction of the ellipse γ from two intersecting circles {α, β}, by our procedure,
leads to the triangle MNV and its associated deltoid, i.e. the envelope of its Simson
lines. The key property in this respect is the following (See Figure 15).

Theorem 9. For all points E, line EZ is a Simson line of the triangle MNV .
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We prove first that the intersection point W of MN and EZ and the other than C
intersection point Y of the circumcircle κ of MNV and line AB define a segment WY
which is orthogonal to MN . This is so because WYAM is cyclic. This in turn follows

from the equality of angles M̂AW = ÂWX = ÂBE = ĈNB, which implies that AW
and CN are parallel, since MA,WX,NB are parallel being all orthogonal to AB. From

the parallelity of AW to CN follows that M̂WA = D̂NC = M̂Y A, later becauseMYCN

is cyclic. This shows that M̂WA = M̂Y A and implies the orthogonality of WY to MN .
Let T be the other intersection point of YW with the circle κ = (MNV ), then, since
V C is a diameter of κ, line V Y is orthogonal to AB, hence parallel to EZ. By a well
known theorem for the orientation of the Simson lines (see theorem 15 in the appendix),
the line EZ is the Simson line of the point T on the circle κ. This completes the proof
of the theorem.
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Fig. 16. The deltoid-envelope of lines EZ

Figure 16 shows the deltoid-envelope of the Simson lines of triangle MNV together
with the corresponding cardioid-locus of point E. There are various relations visible in
this figure, which are consequences of our discussion or can be proved easily. I mention
only next property, which can be proved by considering special places of the point E.

Theorem 10. The deltoid passes through point D and is tangent to the cardioid at two
points {M ′, N ′} on line MN , which are the projections of the diameter M1N1 of the
circumcircle κ of MNV , which is parallel to the side MN .
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It is remarkable that both the deltoid ([22, p.72]) and the cardioid ([22, p. 34]) can be
generated from a point of a circle congruent to the Euler circle θ of MNV which rolls on
another circle. The deltoid is generated by rolling such a circle inside the circle ζ′ which
is concentring to the Euler circle and has the radius r = 3rθ. The cardioid is generated
by rolling circle θ outside its congruent ζ.

Remark 3. In the discussion we have tacitly assumed that the two intersecting circles
{α, β}, defining our configuration, intersect at an obtuse angle, equivalently the angle

ĤCL = M̂V N is acute. The case of circles intersecting at an acute angle can be handled
using, essentially, the same arguments. Figure 17 shows a configuration for such a case.

M

N

H

L

V

A B

E

Z

C

D γ

α β

Fig. 17. The case of obtuse angles

8. Appendix

In this section we gather together some well known facts used in the proofs, mainly
on Maclaurin’s theorem, properties of the Cardioids, Simson lines, and orthopoles.

8.1. Maclaurin’s theorem. Maclaurin’s theorem describes the generation of a conic
by the free vertex Z of a variable triangle ZFF ′, whose other two vertices F , F ′ are
bound to move on two fixed lines η and η′. The precise statement is the following ([6,
II, p.13], [11, p.72], [27, p.299]).
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Fig. 18. Maclaurin’s theorem

Theorem 11. Let the variable triangle ZFF ′ have its two vertices F and F ′ move,
correspondingly on two fixed lines η and η′, while its side-lines ZF,ZF ′ and FF ′ pass,
correspondingly through three fixed points L, H and C. Then its free vertex Z describes
a conic. This conic passes through the points H, L and the intersection point D of lines
η, η′. The conic passes also through the intersection points H ′, L′, correspondingly, of
the line-pairs (η,HC) and (η′, CL).

The theorem, in its previous form, applies for three points {C,H,L} and two lines {ε, ε′}
in general position (See Figure 18). In the special case, in which point H is contained in
line η, points H and H ′ coincide and the conic is tangent to line CH at H . Analogous
is the behavior for line CL if L is contained in η′. This particular case applies to our
configuration, impying the tangency of the conic γ to lines CH , CL, correspondingly at
H and L.

8.2. Cardioid. One way to define the cardioid ([3] [22, p.34], [30, p.89], [23, p.142]), is
to consider it as the geometric locus of a fixed point E of a circle ρ rolling on a circle ζ of
equal radius, the rolling circle starting to roll at the point D of ζ. The resulting curve has
a cusp at D (See Figure 19). The circle ζ could be called the basic circle of the cardioid.
The cardioid is completely determined by its basic circle and a point D on it, defining its
cusp. Among the many properties of this remarkable curve is the fact that the one-sided
tangents at D coincide and both contain the center Oζ of the fixed circle and line DOζ

is a symmetry axis of the curve. If X is the contact point of the circles ρ and ζ, X ′ is
the middle of DE, and Oρ is the center of ρ, then, since the arcs XE on ρ and XD on ζ
are equal, the quadrilateral DEOρOζ is an equilateral trapezium and XX ′ is orthogonal
to DE, which is parallel to OρOζ . Taking the circle σ in symmetric position of ρ w.r. to
Oζ and considering the corresponding point E′ of the locus, we realize analogously that
DE′OσOζ is an equilateral trapezium and EE′OσOρ is a parallelogram. This proves the
following fundamental property of the cardioid.
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Fig. 19. Cardioid generation by a rolling circle

Theorem 12. Every line through the cusp D of the cardioid defines a chord EE′ of it,
which has the constant length 4rζ , where rζ is the radius of the fixed circle Oζ .

ζ

α

ΟΑ

D

Fig. 20. Cardioid generation as envelope of circles

Adopting the previous definition, we can formulate an alternative definition of the car-
dioid in the form of the following theorem.

Theorem 13. Let D be a fixed point on a circle ζ. For each other point Oα on ζ define
the circle α with center at Oα and radius the distance rα = |DOα|. Then the envelope of
all these circles α is a cardioid with basic circle ζ and its cusp at D.

Cardioids have been extensively studied in the past ([22, p.34], [30, p.89], [23, p.142],
[24, p.73], [9]). For a short account and references see Archibald’s article [5]. The
following theorem, due to Butchard ([10]), applies to more general situations than it is
the case with our configuration.
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E
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β

Fig. 21. Cardioid generation by a constant angle ÂEB

Theorem 14. If a, constant in measure, angle AEB has its legs EA, EB, respectively,
tangent to two circles α and β, then its vertex E describes a cardioid.

8.3. Simson lines. The Simson line sP of a triangle ABC w.r. to a point P on its cir-
cumcircle c = (ABC) is the line carrying the projections P1, P2, P3 of P (See Figure 22),
respectively, on sides BC, CA and AB ([12, p.140]). A property of Simson lines, used in
our discussion, is the one expressed by the following proposition ([12, p.142]).

P1

P3

C

P'

P2

c

A

sP

B

P

Fig. 22. Simson lines

Theorem 15. If for a point P on the circumcircle c of triangle ABC and its projection
on a side, say P2 on CA, line PP2 is extended to cut c at a second point P ′, then line
P ′B is parallel to the Simson line sP of P .

Another fact used in the discussion is also the following ([1, p.240], [28, p.231], [14,
p.101]),([15, p.563],[8, p.224]) (See Figure 23).
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Fig. 23. Deltoid: the envelope of Simson lines

Theorem 16. The evelope of all Simson lines sp of triangle ABC is an algebraic curve
of degree four, called deltoid. This curve is generated by a point Op of a circle e′ equal
to the Euler circle e of the triangle, which roles inside a circle e′′ concentric to e and of
triple radius.

8.4. Orthopoles. The orthopole of a line ε w.r. to a triangle ABC results by a process
of double projection of each vertex of the triangle. Vertex A is projected on line ε to
the point A′ and point A′, in turn, is projected on the opposite side BC, to point A′′.
Analogously

A

B

C

A'

A''

B'
B''

C'

C''

Oε

ε

Fig. 24. The orthopole of a line w.r. to a triangle

are defined the points B′, B′′ and C′, C′′ (See Figure 24). It is proved that the lines
A′A′′, B′B′′ and C′C′′ intersect at a point Oε which is the orthopole of the line ε w.r.
to ABC ([21, p.17], [16, p.49], [19, p.106], [18]). The main properties used in this article
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are expressed by the following two theorems. The first of them relating the orthopole to
Simson lines and the deltoid they envelope (See Figure 25).

A

B
C

POP

tP

sP
Fig. 25. The deltoid contact point OP of the Simson line sP

Theorem 17. The orthopole OP of the tangnet tP of a point P on the circumcircle of
triangle ABC is on the Simson line sP of that point and coincides with its contact point
with the deltoid-envelope of all Simson lines of the triangle.

The second property is concerned with the orthopoles w.r. to a fixed triangle and all
the lines through a given point D. Their orthopoles define a conic called the orthopolar
conic of point D w.r. to the triangle (See Figure 26).

ε

Οε D

A

B C

Fig. 26. The orthopolar conic of point D w.r. to the triangle ABC

.

Theorem 18. The orthopoles w.r. to the triangle ABC of all lines through the point D
generate a conic.

Given the triangle ABC, there is a particular orthopolar conic inscribed in the triangle.
Next theorem describes how this is done ([4], [13], [19, p.125], [16, p.46], [18]) (See
Figure 27).
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X20

X69 ε

Οε

Fig. 27. The orthopolar conic of point X20

Theorem 19. Given the triangle ABC, the orthopolar conic of its triangle center X20

(called the Delongchamps point of the triangle), is a conic inscribed in the triangle, with
perspector the triangle center X69. This is an ellipse tangent to the sides of the triangle
whose center coincides with the circumcenter of the triangle.

The standard reference for general triangle centers is Kimberling’s encyclopedia of
triangle centers [20]. For the particular centers X20 and X69, the previously cited facts
and many other interesting properties can be found in the articles [17], [25], [29].
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