
EHRMANN’S THIRD LEMOINE CIRCLE

DARIJ GRINBERG

Abstract. The symmedian point of a triangle is known to give rise to two
circles, obtained by drawing respectively parallels and antiparallels to the sides
of the triangle through the symmedian point. In this note we will explore a
third circle with a similar construction — discovered by Jean-Pierre Ehrmann
[1]. It is obtained by drawing circles through the symmedian point and two
vertices of the triangle, and intersecting these circles with the triangle’s sides.
We prove the existence of this circle and identify its center and radius.

1. The first two Lemoine circles

Let us remind the reader about some classical triangle geometry first. Let L
be the symmedian point of a triangle ABC. Then, the following two results are
well-known ([3], Chapter 9):
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Fig. 1.

Theorem 1. Let the parallels to the lines BC, BC, CA, CA, AB, AB through
L meet the lines CA, AB, AB, BC, BC, CA at six points. These six points lie
on one circle, the so-called first Lemoine circle of triangle ABC; this circle is
a Tucker circle, and its center is the midpoint of the segment OL, where O is the
circumcenter of triangle ABC. (See Fig. 1)

The somewhat uncommon formulation “Let the parallels to the lines BC, BC,
CA, CA, AB, AB through L meet the lines CA, AB, AB, BC, BC, CA at six
points” means the following: Take the point where the parallel to BC through L
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meets CA, the point where the parallel to BC through L meets AB, the point
where the parallel to CA through L meets AB, the point where the parallel to
CA through L meets BC, the point where the parallel to AB through L meets
BC, and the point where the parallel to AB through L meets CA.
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Fig. 2.

Furthermore (see [3] for this as well):

Theorem 2. Let the antiparallels to the lines BC, BC, CA, CA, AB, AB
through L meet the lines CA, AB, AB, BC, BC, CA at six points. These six
points lie on one circle, the so-called second Lemoine circle (also known as the
cosine circle) of triangle ABC; this circle is a Tucker circle, and its center is L.
(See Fig. 2.)

We have been using the notion of a Tucker circle here. This can be defined as
follows:

Theorem 3. Let ABC be a triangle. Let Qa and Ra be two points on the line
BC. Let Rb and Pb be two points on the line CA. Let Pc and Qc be two points
on the line AB. Assume that the following six conditions hold: The lines QbRc,
RcPa, PbQa are parallel to the lines BC, CA, AB, respectively; the lines PbPc,
QcQa, RaRb are antiparallel to the sidelines BC, CA, AB of triangle ABC,
respectively. (Actually, requiring five of these conditions is enough, since any
five of them imply the sixth one, as one can show.) Then, the points Qa, Ra,
Rb, Pb, Pc and Qc lie on one circle. Such circles are called Tucker circles of
triangle ABC. The center of each such circle lies on the line OL, where O is
the circumcenter and L the symmedian point of triangle ABC. Notable Tucker
circles are the circumcircle of triangle ABC, its first and second Lemoine circles
(and the third one we will define below), and its Taylor circle.

2. The third Lemoine circle

Far less known than these two results is the existence of a third member can
be added to this family of Tucker circles related to the symmedian point L. As
far as I know, it has been first discovered by Jean-Pierre Ehrmann in 2002 [1]:

Theorem 4. Let the circumcircle of triangle BLC meet the lines CA and AB
at the points Ab and Ac (apart from C and B). Let the circumcircle of triangle
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CLA meet the lines AB and BC at the point Bc and Ba (apart from A and C).
Let the circumcircle of triangle ALB meet the lines BC and CA at the points Ca

and Cb (apart from B and A). Then, the six points Ab, Ac, Bc, Ba, Ca, Cb lie
on one circle. This circle is a Tucker circle, and its midpoint M lies on the line
OL and satisfies LM = −1

2 · LO (where the segments are directed). The radius

of this circle is 1
2

√
9r21 + r2, where r is the circumradius and r1 is the radius of

the second Lemoine circle of triangle ABC.

We propose to denote the circle through the points Ab, Ac, Bc, Ba, Ca, Cb as
the third Lemoine circle of triangle ABC. (See Fig. 3)
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Fig. 3.

The rest of this note will be about proving this theorem. First we will give
a complete proof of Theorem 4 in sections 3-5; this proof will use four auxiliary
facts (Theorems 5, 6, 7 and 8). Then, in sections 6 and 7, we will give a new
argument to show the part of Theorem 4 which claims that the six points Ab, Ac,
Bc, Ba, Ca, Cb lie on one circle; this argument will not give us any information
about the center of this circle (so that it doesn’t extend to a complete second
proof of Theorem 4, apparently), but it has the advantage of showing a converse
to Theorem 4 (which we formulate as Theorem 10 in the final section 8).

3. A lemma

In triangle geometry, most nontrivial proofs begin by deducing further (and
easier) properties of the configuration. These properties are then used as lemmas
(and even if they don’t turn out directly useful, they are often interesting for
themselves). In the case of Theorem 4, the following result plays the role of such
a lemma:

Theorem 5. The point L is the centroid of each of the three triangles AAbAc,
BaBBc, CaCbC. (See Fig. 4)
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Fig. 4.

Actually this result isn’t as much about symmedian points and centroids, as it
generalizes to arbitrary isogonal conjugates:

Theorem 6. Let P and Q be two points isogonally conjugate to each other with
respect to triangle ABC. Let the circumcircle of triangle CPA meet the lines
AB and BC at the points Bc and Ba (apart from A and C). Then, the triangles
BaBBc and ABC are oppositely similar, and the points P and Q are correspond-
ing points in the triangles BaBBc and ABC. (See Fig. 5)

Remark 1. Two points P1 and P2 are said to be corresponding points in two
similar triangles ∆1 and ∆2 if the similitude transformation that maps triangle
∆1 to triangle ∆2 maps the point P1 to the point P2.
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Fig. 5.

Proof of Theorem 6. We will use directed angles modulo 180◦. A very readable
introduction into this kind of angles can be found in [4]. A list of their important
properties has also been given in [2].
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The point Q is the isogonal conjugate of the point P with respect to triangle
ABC; thus, ]PAB = ]CAQ.

Since C, A, Bc, Ba are concyclic points, we have ]CBaBc = ]CABc, so that
]BBaBc = −]BAC. Furthermore, ]BcBBa = −]CBA. Thus, the triangles
BaBBc and ABC are oppositely similar (having two pairs of oppositely equal
angles).

By the chordal angle theorem, ]PBaBc = ]PABc = ]PAB = ]CAQ =
−]QAC. Similarly, ]PBcPa = −]QCA. These two equations show that the
triangles BaPBc and AQC are oppositely similar. Combining this with the op-
posite similarity of triangles BaBBc and ABC, we obtain that the quadrilaterals
BaBBcP and ABCQ are oppositely similar. Hence, P and Q are corresponding
points in the triangles BaBBc and ABC. (See Fig. 6.) Theorem 6 is thus proven.

�

Proof of Theorem 5. Now return to the configuration of Theorem 4. To prove
Theorem 5, we apply Theorem 6 to the case when P is the symmedian point
of triangle ABC; the isogonal conjugate Q of P is, in this case, the centroid of
triangle ABC. Now, Theorem 6 says that the points P and Q are corresponding
points in the triangles BaBBc and ABC. Since Q is the centroid of triangle
ABC, this means that P is the centroid of triangle BaBBc. But P = L; thus, we
have shown that L is the centroid of triangle BaBBc. Similarly, L is the centroid
of triangles AAbAc and CaCbC, and Theorem 5 follows. �

4. Antiparallels

Theorem 5 was the first piece of our jigsaw. Next we are going to chase some
angles.

Since the points B, C, Ab, Ac are concyclic, we have ]CAbAc = ]CBAc, so
that ]AAbAc = −]ABC. Thus, the line AbAc is antiparallel to BC in triangle
ABC. Similarly, the lines BcBa and CaCb are antiparallel to CA and AB. We
have thus shown:

Theorem 7. In the configuration of Theorem 4, the lines AbAc, BcBa, CaCb are
antiparallel to BC, CA, AB in triangle ABC.

Now let Xb, Xc, Yc, Ya, Za, Zb be the points where the antiparallels to the
lines BC, BC, CA, CA, AB, AB through L meet the lines CA, AB, AB, BC,
BC, CA. According to Theorem 2, these points Xb, Xc, Yc, Ya, Za, Zb lie on
one circle around L; however, to keep this note self-contained, we do not want
to depend on Theorem 2 here, but rather prove the necessary facts on our own
(Fig. 6):
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Partial proof of Theorem 2. Since symmedians bisect antiparallels, and since the
symmedian point L of triangle ABC lies on all three symmedians, the point L
must bisect the three antiparallels XbXc, YcYa, ZaZb. This means that LXb =
LXc, LYc = LYa and LZa = LZb. Furthermore, ]AXcXb = −]ACB (since
XbXc is antiparallel to BC), thus ]YcXcL = −]ACB; similarly, ]XcYcL =
−]BCA, thus ]LYcXc = −]XcYcL = ]BCA = −]ACB = ]YcXcL. Hence,
triangle XcLYc is isosceles, so that LXc = LYc. Similarly, LZb = LXb and
LYa = LZa. Hence,

LXb = LXc = LYc = LYa = LZa = LZb.

This shows that the points Xb, Xc, Yc, Ya, Za, Zb lie on one circle around L.
This circle is the so-called second Lemoine circle of triangle ABC. Its radius is
r1 = LXb = LXc = LYc = LYa = LZa = LZb.

We thus have incidentally proven most of Theorem 2 (to complete the proof of
Theorem 2, we would only have to show that this circle is a Tucker circle, which
is easy); but we have also made headway to the proof of Theorem 4. �
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Proof of Theorem 9, part 1. Now consider Fig. 8. Let Bm be the midpoint of the
segment BcBa. According to Theorem 5, the point L is the centroid of triangle
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BaBBc; thus, it lies on the median BBm and divides it in the ratio 2 : 1. Hence,
BL : LBm = 2 (with directed segments).

Let M be the point on the line OL such that LM = −1
2 · LO (with directed

segments); then, LO = −2 · LM , so that OL = −LO = 2 · LM , and thus
OL : LM = 2 = BL : LBm. By the converse of Thales’ theorem, this yields
BmM ‖ BO.

The lines YcYa and BcBa are both antiparallel to CA, and thus parallel to
each other. Hence, Thales’ theorem yields BmBc : LYc = BBm : BL. But since
BL : LBm = 2, we have BL = 2 · LBm, so that LBm = 1

2 · BL and therefore

BBm = BL + LBm = BL + 1
2 ·BL = 3

2 ·BL and BBm : BL = 3
2 . Consequently,

BmBc : LYc = 3
2 and BmBc = 3

2 · LYc = 3
2r1.

It is a known fact that every line antiparallel to the side CA of triangle ABC
is perpendicular to the line BO (where, as we remind, O is the circumcenter of
triangle ABC). Thus, the line BcBa (being antiparallel to CA) is perpendicular
to the line BO. Since BmM ‖ BO, this yields BcBa ⊥ BmM . Furthermore,
BmM ‖ BO yields BO : BmM = BL : LBm (by Thales), so that BO : BmM = 2
and BO = 2 ·BmM , and thus BmM = 1

2 ·BO = 1
2r, where r is the circumradius

of triangle ABC.
Now, Pythagoras’ theorem in the right-angled triangle MBmBc yields

MBc =
√
BmBc

2 + BmM2 =

√(
3

2
r1

)2

+

(
1

2
r

)2

=

√
9

4
r21 +

1

4
r2 =

1

2

√
9r21 + r2.

Similarly, we obtain the same value 1
2

√
9r21 + r2 for each of the lengths MBa,

MCa, MCb, MAb and MAc. Hence, the points Ab, Ac, Bc, Ba, Ca, Cb all lie on
the circle with center M and radius 1

2

√
9r21 + r2. The point M , in turn, lies on

the line OL and satisfies LM = −1
2 · LO.

This already proves most of Theorem 4. The only part that has yet to be
shown is that this circle is a Tucker circle. We will do this next. �

5. Parallels

Since the points Ab, Ba, Ca, Cb are concyclic, we have ]CaBaAb = ]CaCbAb,
thus ]CBaAb = ]CaCbC. But since CaCb is antiparallel to AB, we have
]CCbCa = −]CBA, so that ]CaCbC = −]CCbCa = ]CBA, thus ]CBaAb =
]CBA; consequently, AbBa ‖ AB. Similarly, BcCb ‖ BC and CaAc ‖ CA.
Altogether, we have thus seen:

Theorem 8. The lines BcCb, CaAc, AbBa are parallel to BC, CA, AB. (See
Fig. 8)
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Fig. 8.

Proof of Theorem 4, part 2. If we now combine Theorem 7 and Theorem 8, we
conclude that the sides of the hexagon AbAcCaCbBcBa are alternately antiparallel
and parallel to the sides of triangle ABC. Thus, AbAcCaCbBcBa is a Tucker
hexagon, and the circle passing through its vertices Ab, Ac, Bc, Ba, Ca, Cb is a
Tucker circle. This concludes the proof of Theorem 4. �

One remark: It is known that the radius r1 of the second Lemoine circle ∆ABC
is r tanω, where ω is the Brocard angle of triangle ABC. 1 Thus, the radius
of the third Lemoine circle is

1

2

√
9r21 + r2 =

1

2

√
9 (r tanω)2 + r2 =

1

2

√
9r2 tan2 ω + r2 =

r

2

√
9 tan2 ω + 1.

1For a quick proof of this fact, let X, Y , Z denote the feet of the perpendiculars from the
point L to the sides BC, CA, AB of triangle ABC. Then, the radius r1 of the second Lemoine

circle is r1 = LYa. Working without directed angles now, we see that LYa =
LX

sinA
(from the

right-angled triangle LXYa), so that r1 = LYa =
LX

sinA
. Since sinA =

a

2r
by the extended law

of sines, this rewrites as r1 =
LX( a

2r

) =
LX · 2r

a
. This rewrites as

a2

2r
r1 = a · LX. Similarly,

b2

2r
r1 = b · LY and

c2

2r
r1 = c · LZ. Adding these three equations together, we obtain

a2

2r
r1 +

b2

2r
r1 +

c2

2r
r1 = a · LX + b · LY + c · LZ.

On the other hand, let S denote the area of triangle ABC. But the area of triangle BLC is
1

2
a · LX (since a is a sidelength of triangle BLC, and LX is the corresponding altitude), and

similarly the areas of triangles CLA and ALB are
1

2
b · LY and

1

2
c · LZ. Thus,

1

2
a · LX +

1

2
b · LY +

1

2
c · LZ = (area of triangle BLC) + (area of triangle CLA) + (area of triangle ALB)

= (area of triangle ABC) = S,
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6. A different approach: a lemma about four points

At this point, we are done with our job: Theorem 4 is proven. However, our
proof depended on the construction of a number of auxiliary points (not only Bm,
but also the six points Xb, Xc, Yc Ya, Za, Zb). One might wonder whether there
isn’t also a (possibly more complicated, but) more straightforward approach to
proving the concyclicity of the points Ab, Ac, Bc, Ba, Ca, Cb without auxiliary
constructions. We will show such an approach now. It will not yield the complete
Theorem 4, but on the upside, it helps proving a kind of converse.
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Fig. 9.

Let us use directed areas and powers of points with respect to circles. Our
main vehicle is the following fact:

Theorem 9. Let A, B, C, D be four points. Let pA, pB, pC , pD denote the
powers of the points A, B, C, D with respect to the circumcircles of triangles
BCD, CDA, DAB, ABC. Furthermore, we denote by [P1P2P3] the directed
area of any triangle P1P2P3. Then,

(1) −pA · [BCD] = pB · [CDA] = −pC · [DAB] = pD · [ABC] .

(See Fig. 10.)

so that a ·LX+ b ·LY +c ·LZ = 2S. The equation
a2

2r
r1+

b2

2r
r1+

c2

2r
r1 = a ·LX+ b ·LY +c ·LZ

thus becomes
a2

2r
r1 +

b2

2r
r1 +

c2

2r
r1 = 2S, so that

r1 =
2S

a2

2r
r1 +

b2

2r
r1 +

c2

2r
r1

=
4rS

a2 + b2 + c2
= r� a2 + b2 + c2

4S︸ ︷︷ ︸
=cotω

= r� cotω = r tanω,

qed.
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Proof of Theorem 9. In the following, all angles are directed angles modulo 180◦,
and all segments and areas are directed. Let the circumcircle of triangle BCD
meet the line AC at a point A′ (apart from C). Let the circumcircle of triangle
CDA meet the line BD at a point B′ (apart from D). Let the lines AC and BD
intersect at P . Since the points C, D, A, B′ are concyclic, we have ]DB′A =
]DCA, thus ]PB′A = ]DCA. But since the points C, D, B, A′ are concyclic,
we have ]DBA′ = ]DCA′, so that ]PBA′ = ]DCA. Therefore, ]PB′A =
]PBA′, which leads to B′A ‖ BA′. Hence, by the Thales theorem,

A′A
BB′

=
PA′

PB
.
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Fig. 10.

The power pA of the point A with respect to the circumcircle of triangle BCD
is AA′ ·AC; similarly, pB = BB′ ·BD. Thus,

−pA · [BCD]

pB · [CDA]
=
−AA′ ·AC · [BCD]

BB′ ·BD · [CDA]
=

A′A ·AC · [BCD]

BB′ ·BD · [CDA]
=

A′A
BB′

· AC
BD
· [BCD]

[CDA]

=
PA′

PB
· AC
BD
· [BCD]

[CDA]
.

But it is a known fact that whenever A, B, C are three collinear points and P is

a point not collinear with A, B, C, then we have
AB
AC =

[APB]

[APC] . This fact yields

CP

CA
=

[CDP ]

[CDA]
and

DP

DB
=

[DCP ]

[DCB]
,

so that

CP

CA
:
DP

DB
=

[CDP ]

[CDA]
:

[DCP ]

[DCB]
=

[DCB] · [CDP ]

[DCP ] · [CDA]
=
− [BCD] · [CDP ]

− [CDP ] · [CDA]
=

[BCD]

[CDA]
,
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and thus

−pA · [BCD]

pB · [CDA]
=

PA′

PB
· AC
BD
· [BCD]

[CDA]
=

PA′

PB
· AC
BD
·
(
CP

CA
:
DP

DB

)

=
PA′

PB
· AC
BD
·
(
PC

AC
:
PD

BD

)
=

PA′

PB
· AC
BD
· PC

AC
· BD

PD
=

PA′ · PC

PB · PD
.

But the intersecting chord theorem yields PA′ · PC = PB · PD, so that

−pA · [BCD]

pB · [CDA]
= 1;

in other words, −pA · [BCD] = pB · [CDA]. Similarly, −pB · [CDA] = pC · [DAB],
so that pB · [CDA] = −pC · [DAB], and −pC · [DAB] = pD · [ABC]. Combining
these equalities, we get (1). This proves Theorem 9. �

7. Application to the triangle

Now the promised alternative proof of the fact that the points Ab, Ac, Bc, Ba,
Ca, Cb are concyclic:

Proof. The identity (1) can be rewritten as

pA · [BDC] = pB · [CDA] = pC · [ADB] = pD · [ABC]

(since [BCD] = − [BDC] and [DAB] = − [ADB]). Applying this equation to
the case when D is the symmedian point L of triangle ABC, we get

pA · [BLC] = pB · [CLA] = pC · [ALB]

(we have dropped the third equality sign since we don’t need it), where pA, pB,
pC are the powers of the points A, B, C with respect to the circumcircles of
triangles BLC, CLA, ALB. But we have pA = AC · AAb and pB = BC · BBa

(Fig. 4); thus, pA · [BLC] = pB · [CLA] becomes

AC ·AAb · [BLC] = BC ·BBa · [CLA] ,

so that

(2)
AAb

BBa
=

BC

AC
· [CLA]

[BLC]
.
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Now let X, Y and Z be the feet of the perpendiculars from the symmedian
point L onto the lines BC, CA, AB. It is a known fact that the distances from
the symmedian point of a triangle to its sides are proportional to these sides; thus,
LX : LY : LZ = BC : CA : AB. 2 But since the area of a triangle equals 1

2 ·
(one of its sidelengths) · (corresponding altitude), we have [BLC] = 1

2 ·BC ·LX,

[CLA] = 1
2 · CA · LY and [ALB] = 1

2 ·AB · LZ. Thus, (2) becomes

AAb

BBa
=

BC

AC
·

1
2 · CA · LY
1
2 ·BC · LX =

BC

AC
· CA

BC
· LY
LX

=
BC

AC
· CA

BC
· CA

BC

=
BC

AC
· CA2

BC2
=

BC

AC
· AC

2

BC2
=

AC

BC
.

By the converse of Thales’ theorem, this yields AbBa ‖ AB. Similarly, BcCb ‖ BC
and CaAc ‖ CA; this proves Theorem 8. The proof of Theorem 7 can be done in
the same way as in section 4 (it was too trivial to have any reasonable alterna-
tive). Combined, this yields that the sides of the hexagon AbAcCaCbBcBaAb are
alternately antiparallel and parallel to the sides of triangle ABC. Consequently,
this hexagon is a Tucker hexagon, and since every Tucker hexagon is known to be
cyclic, we thus conclude that the points Ab, Ac, Bc, Ba, Ca, Cb lie on one circle.
This way we have reproven a part of Theorem 4. �

Here is an alternative way to show that the points Ab, Ac, Bc, Ba, Ca, Cb lie
on one circle, without using the theory of Tucker hexagons:

Proof. (See Fig. 9.) Since CaCb is antiparallel to AB, we have ]CCbCa =
−]CBA, and thus

]CbCaAc = ] (CaCb; CaAc) = ] (CaCb; CA) (since CaAc ‖ CA)

= ]CaCbC = −]CCbCa = ]CBA.

Since AbAc is antiparallel to BC, we have ]AAbAc = −]ABC, so that

]CbAbAc = ]AAbAc = −]ABC = ]CBA.

Therefore, ]CbAbAc = ]CbCaAc, so that the points Ca, Cb, Ab, Ac lie on one
circle. The point Ba also lies on this circle, since

]CaBaAb = ] (BC; AbBa) = ] (BC; AB) (since AbBa ‖ AB)

= ]CBA = −]CCbCa (since ]CCbCa = −]CBA was shown above)

= ]CaCbAb.

Similarly, the point Bc lies on this circle as well. This shows that all six points
Ab, Ac, Bc, Ba, Ca, Cb lie on one circle. �

2Actually, there is no need to refer to this known fact here, because we have almost completely

proven it above. Indeed, while proving that r1 = r tanω, we showed that r1 =
LX · 2r

a
, so that

LX =
r1
2r

a =
r1
2r

BC. Similarly, LY =
r1
2r

CA and LZ =
r1
2r

AB, so that LX : LY : LZ = BC :

CA : AB.
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This argument did never use anything but the facts that the lines AbAc, BcBa,
CaCb are antiparallel to BC, CA, AB and that the lines BcCb, CaAc, AbBa are
parallel to BC, CA, AB. It can therefore be used as a general argument why
Tucker hexagons are cyclic.

8. A converse

The alternative proof in 7 allows us to show a converse of Theorem 4, also
found by Ehrmann in [1]:

Theorem 10. Let P be a point in the plane of a triangle ABC but not on its
circumcircle. Let the circumcircle of triangle BPC meet the lines CA and AB
at the points Ab and Ac (apart from C and B). Let the circumcircle of triangle
CPA meet the lines AB and BC at the point Bc and Ba (apart from A and C).
Let the circumcircle of triangle APB meet the lines BC and CA at the points
Ca and Cb (apart from B and A). If the six points Ab, Ac, Bc, Ba, Ca, Cb lie on
one circle, then P is the symmedian point of triangle ABC.

We will not give a complete proof of this theorem here, but we only sketch
its path: First, it is easy to see that the lines AbAc, BcBa, CaCb are antiparallel
to BC, CA, AB. Now, we can reverse the argument from section 7 to show
that the lines BcCb, CaAc, AbBa are parallel to BC, CA, AB, and use this to
conclude that the distances from P to the sidelines BC, CA, AB of triangle ABC
are proportional to the lengths of BC, CA, AB. But this implies that P is the
symmedian point of triangle ABC.
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